Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Théorème de l'invariance du domaineEn mathématiques, et plus précisément en topologie, le théorème de l'invariance du domaine est un résultat dû à L. E. J. Brouwer (1912), concernant les applications continues entre sous-ensembles de Rn. La forme la plus fréquente de ce théorème est : Soit U un sous-ensemble ouvert de Rn et f : U → Rn une injection continue, alors V = f(U) est ouvert et f est un homéomorphisme entre U et V.
Homologie cellulaireEn mathématiques et plus précisément en topologie algébrique, l'homologie cellulaire est une théorie de l'homologie des CW-complexes. Elle coïncide avec leur homologie singulière et en fournit un moyen de calcul. Si X est un CW-complexe de n-squelette X, les modules d'homologie cellulaire sont définis comme les groupes d'homologie du complexe de chaînes cellulaires Le groupe est le groupe abélien libre dont les générateurs sont les n-cellules de X.
Variété topologiqueEn topologie, une variété topologique est un espace topologique, éventuellement séparé, assimilable localement à un espace euclidien. Les variétés topologiques constituent une classe importante des espaces topologiques, avec des applications à tous les domaines des mathématiques. Le terme variété peut désigner une variété topologique, ou, le plus souvent, une variété topologique munie d'une autre structure. Par exemple, une variété différentielle est une variété topologique munie d'une structure permettant le calcul différentiel.
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
Topos (mathématiques)En mathématiques, un topos (au pluriel topos ou topoï) est un type particulier de catégorie. La théorie des topoï est polyvalente et est utilisée dans des domaines aussi variés que la logique, la topologie ou la géométrie algébrique. Un topos peut être défini comme une catégorie pourvue : de limites et colimites finies ; d'exponentielles ; d'un . D'autres définitions équivalentes sont données plus bas.
Steenrod algebraIn algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod cohomology. For a given prime number , the Steenrod algebra is the graded Hopf algebra over the field of order , consisting of all stable cohomology operations for mod cohomology. It is generated by the Steenrod squares introduced by for , and by the Steenrod reduced th powers introduced in and the Bockstein homomorphism for . The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory.
Pasting lemmaIn topology, the pasting or gluing lemma, and sometimes the gluing rule, is an important result which says that two continuous functions can be "glued together" to create another continuous function. The lemma is implicit in the use of piecewise functions. For example, in the book Topology and Groupoids, where the condition given for the statement below is that and The pasting lemma is crucial to the construction of the fundamental group or fundamental groupoid of a topological space; it allows one to concatenate continuous paths to create a new continuous path.
Cellular approximation theoremIn algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : X → Y is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : X → Y between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.