Champ solénoïdalthumb|Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. L’incompressibilité fait référence à la conservation du volume.
Forme volumeEn géométrie différentielle, une forme volume généralise la notion de déterminant aux variétés différentielles. Elle définit une mesure sur la variété, permet le calcul des volumes généralisés, et la définition générale des orientations. Une forme volume se définit comme une forme différentielle de degré maximal, nulle en aucun point. Pour qu'une variété admette une forme volume, il faut et il suffit qu'elle soit orientable. Dans ce cas, il en existe une infinité.
Notation for differentiationIn differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Dualité de HodgeEn algèbre linéaire, l'opérateur de Hodge, introduit par William Vallance Douglas Hodge, est un opérateur sur l'algèbre extérieure d'un espace vectoriel euclidien orienté. Il est usuellement noté par une étoile qui précède l'élément auquel l'opérateur est appliqué. On parle ainsi d'étoile de Hodge. Si la dimension de l'espace est n, l'opérateur établit une correspondance entre les k-vecteurs et les (n-k)-vecteurs, appelée dualité de Hodge. En géométrie différentielle, l'opérateur de Hodge peut être étendu aux fibrés vectoriels riemanniens orientés.
Dérivée totaleEn analyse, la dérivée totale d'une fonction est une généralisation du nombre dérivé pour les fonctions à plusieurs variables. Cette notion est utilisée dans divers domaines de la physique et tout particulièrement en mécanique des milieux continus et en mécanique des fluides dans lesquels les grandeurs dépendent à la fois du temps et de la position. Soit une fonction à plusieurs variables et , , fonctions de .
Potentiel d'un champ vectorielConcept fondamental en analyse vectorielle et pour ses implications en physique, le potentiel d'un champ vectoriel est une fonction scalaire ou vectorielle qui, sous certaines conditions relatives au domaine de définition et à la régularité, permet des représentations alternatives de champs aux propriétés particulières. Ainsi, pour tout champ vectoriel qui satisfait ces conditions, le théorème de Helmholtz-Hodge assure qu'il existe un potentiel vecteur (défini à un gradient près) et un potentiel scalaire (défini à une constante près) tels que est égal à la différence entre le rotationnel de et le gradient de .
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Scalar potentialIn mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Potentiel vecteur du champ magnétiqueLe potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm.