The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as we ...
We prove existence results à la Jeff Smith for left-induced model category structures, of which the injective model structure on a diagram category is an important example. We further develop the notions of fibrant generation and Postnikov presentation fro ...
Let M be a monoidal category endowed with a distinguished class of weak equivalences and with appropriately compatible classifying bundles for monoids and comonoids. We define and study homotopy-invariant notions of normality for maps of monoids and of con ...
Numerical continuation in the context of optimization can be used to mitigate convergence issues due to a poor initial guess. In this work, we extend this idea to Riemannian optimization problems, that is, the minimization of a target function on a Riemann ...
Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory techniques provided an efficient way to construct deformatio ...
To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spal-tenstein solved this problem for chain complexes of R-modules by truncating further and further to the left, resolving the pieces, and ...
Working in the context of symmetric spectra, we describe and study a homotopy completion tower for algebras and left modules over operads in the category of modules over a commutative ring spectrum (eg structured ring spectra). We prove a strong convergenc ...
We show that topological Quillen homology of algebras and modules over operads in symmetric spectra can be calculated by realizations of simplicial bar constructions. Working with several model category structures, we give a homotopical proof after showing ...