Résumé
Amorphous carbon is free, reactive carbon that has no crystalline structure. Amorphous carbon materials may be stabilized by terminating dangling-π bonds with hydrogen. As with other amorphous solids, some short-range order can be observed. Amorphous carbon is often abbreviated to aC for general amorphous carbon, aC:H or HAC for hydrogenated amorphous carbon, or to ta-C for tetrahedral amorphous carbon (also called diamond-like carbon). In mineralogy, amorphous carbon is the name used for coal, carbide-derived carbon, and other impure forms of carbon that are neither graphite nor diamond. In a crystallographic sense, however, the materials are not truly amorphous but rather polycrystalline materials of graphite or diamond within an amorphous carbon matrix. Commercial carbon also usually contains significant quantities of other elements, which may also form crystalline impurities. With the development of modern thin film deposition and growth techniques in the latter half of the 20th century, such as chemical vapour deposition, sputter deposition, and cathodic arc deposition, it became possible to fabricate truly amorphous carbon materials. True amorphous carbon has localized π electrons (as opposed to the aromatic π bonds in graphite), and its bonds form with lengths and distances that are inconsistent with any other allotrope of carbon. It also contains a high concentration of dangling bonds; these cause deviations in interatomic spacing (as measured using diffraction) of more than 5% as well as noticeable variation in bond angle. The properties of amorphous carbon films vary depending on the parameters used during deposition. The primary method for characterizing amorphous carbon is through the ratio of sp2 to sp3 hybridized bonds present in the material. Graphite consists purely of sp2 hybridized bonds, whereas diamond consists purely of sp3 hybridized bonds. Materials that are high in sp3 hybridized bonds are referred to as tetrahedral amorphous carbon, owing to the tetrahedral shape formed by sp3 hybridized bonds, or as diamond-like carbon (owing to the similarity of many physical properties to those of diamond).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.