The Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement; conceptually, they fall under the study of quantum information science. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems.
Understanding of Bell's states is useful in analysis of quantum communication, such as superdense coding and quantum teleportation. The no-communication theorem prevents this behavior from transmitting information faster than the speed of light.
The Bell states are four specific maximally entangled quantum states of two qubits. They are in a superposition of 0 and 1 - a linear combination of the two states. Their entanglement means the following:
The qubit held by Alice (subscript "A") can be in a superposition of 0 and 1. If Alice measured her qubit in the standard basis, the outcome would be either 0 or 1, each with probability 1/2; if Bob (subscript "B") also measured his qubit, the outcome would be the same as for Alice. Thus, Alice and Bob would each seemingly have random outcome. Through communication they would discover that, although their outcomes separately seemed random, these were perfectly correlated.
This perfect correlation at a distance is special: maybe the two particles "agreed" in advance, when the pair was created (before the qubits were separated), which outcome they would show in case of a measurement.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le codage superdense (aussi appelé codage dense) consiste à utiliser des états corrélés pour transmettre et manipuler de l'information quantique. Le principe du codage dense est le suivant. Alice et Bob doivent s'échanger deux bits d'informations. Disposant chacun pour cela de l'un des deux qbits, d'un état intriqué et d'un canal quantique. A priori, un canal quantique ne peut pas transporter plus d'information par qbit qu'un canal classique et l'on devrait donc transmettre deux qbits pour faire passer le message.
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.
Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Couvre le concept de tolérance aux défauts dans le calcul quantique et la mise en œuvre des codes de correction des erreurs.
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...