Wigner's classificationIn mathematics and theoretical physics, Wigner's classification is a classification of the nonnegative energy irreducible unitary representations of the Poincaré group which have either finite or zero mass eigenvalues. (Since this group is noncompact, these unitary representations are infinite-dimensional.) It was introduced by Eugene Wigner, to classify particles and fields in physics—see the article particle physics and representation theory. It relies on the stabilizer subgroups of that group, dubbed the Wigner little groups of various mass states.
RigourRigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.
Particle physics and representation theoryThere is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.
Recherches atomiques sous le Troisième Reichthumb|upright=2|Démantèlement de la pile atomique expérimentale allemande située à Haigerloch en avril 1945. Dans l'Allemagne nazie, des recherches atomiques furent lancées en avril 1939 dans le cadre du « Projet Uranium » (Uranprojekt), quelques mois après la découverte de la fission nucléaire, sous la direction de la Wehrmacht. Le programme se divisa en plusieurs branches, dont la mise au point d'un réacteur nucléaire (Uranmaschine), la production d'uranium et d'eau lourde et la séparation isotopique de l'uranium, en vue d'exploiter les potentialités énergétiques et militaires de l'atome.
Matrice aléatoireEn théorie des probabilités et en physique mathématique, une matrice aléatoire est une matrice dont les éléments sont des variables aléatoires. La théorie des matrices aléatoires a pour objectif de comprendre certaines propriétés de ces matrices, comme leur norme d'opérateur, leurs valeurs propres ou leurs valeurs singulières. Face à la complexité croissante des spectres nucléaires observés expérimentalement dans les années 1950, Wigner a suggéré de remplacer l'opérateur hamiltonien du noyau par une matrice aléatoire.