Gosset–Elte figuresIn geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches.
Uniform 8-polytopeIn eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets. A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets. Regular 8-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v}, with v {p,q,r,s,t,u} 7-polytope facets around each peak.
Demi-hypercubevignette|Les deux demi-hypercubes du cube de dimension 3 sont des tétraèdres. En géométrie, un demi-hypercube est un polytope de dimension n formé en les sommets d'un hypercube de dimension n, c'est-à-dire en ne conservant qu'un sommet sur deux. Il est également appelé polytope de demi-mesure. À partir d'un hypercube donné, on peut obtenir deux demi-hypercubes distincts, en fonction des sommets que l'on élimine et de ceux que l'on garde (il y a deux choix possibles).
5-demicubeIn five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5-polytope (made of more than one type of regular facets), he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM5 for a 5-dimensional half measure polytope.
HypercubeUn hypercube est, en géométrie, un analogue n-dimensionnel d'un carré (n = 2) et d'un cube (n = 3). C'est une figure fermée, compacte, convexe constituée de groupes de segments parallèles opposés alignés dans chacune des dimensions de l'espace, à angle droit les uns par rapport aux autres. Un hypercube n-dimensionnel est aussi appelé un n-cube. Le terme « polytope de mesure » a aussi été utilisé (notamment par Coxeter), mais il est tombé en désuétude. Enfin, le cas particulier du 4-cube est souvent désigné par le terme de tesseract.