Concept

Positive form

In complex geometry, the term positive form refers to several classes of real differential forms of Hodge type (p, p). Real (p,p)-forms on a complex manifold M are forms which are of type (p,p) and real, that is, lie in the intersection A real (1,1)-form is called semi-positive (sometimes just positive), respectively, positive (or positive definite) if any of the following equivalent conditions holds: is the imaginary part of a positive semidefinite (respectively, positive definite) Hermitian form. For some basis in the space of (1,0)-forms, can be written diagonally, as with real and non-negative (respectively, positive). For any (1,0)-tangent vector , (respectively, ). For any real tangent vector , (respectively, ), where is the complex structure operator. In algebraic geometry, positive definite (1,1)-forms arise as curvature forms of ample line bundles (also known as positive line bundles). Let L be a holomorphic Hermitian line bundle on a complex manifold, its complex structure operator. Then L is equipped with a unique connection preserving the Hermitian structure and satisfying This connection is called the Chern connection. The curvature of the Chern connection is always a purely imaginary (1,1)-form. A line bundle L is called positive if is a positive (1,1)-form. (Note that the de Rham cohomology class of is times the first Chern class of L.) The Kodaira embedding theorem claims that a positive line bundle is ample, and conversely, any ample line bundle admits a Hermitian metric with positive. Semi-positive (1,1)-forms on M form a convex cone. When M is a compact complex surface, , this cone is self-dual, with respect to the Poincaré pairing : For (p, p)-forms, where , there are two different notions of positivity. A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p)-form on an n-dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p)-forms ζ with compact support, we have .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.