Résumé
In biochemistry, globular proteins or spheroproteins are spherical ("globe-like") proteins and are one of the common protein types (the others being fibrous, disordered and membrane proteins). Globular proteins are somewhat water-soluble (forming colloids in water), unlike the fibrous or membrane proteins. There are multiple fold classes of globular proteins, since there are many different architectures that can fold into a roughly spherical shape. The term globin can refer more specifically to proteins including the globin fold. The term globular protein is quite old (dating probably from the 19th century) and is now somewhat archaic given the hundreds of thousands of proteins and more elegant and descriptive structural motif vocabulary. The globular nature of these proteins can be determined without the means of modern techniques, but only by using ultracentrifuges or dynamic light scattering techniques. The spherical structure is induced by the protein's tertiary structure. The molecule's apolar (hydrophobic) amino acids are bounded towards the molecule's interior whereas polar (hydrophilic) amino acids are bound outwards, allowing dipole-dipole interactions with the solvent, which explains the molecule's solubility. Globular proteins are only marginally stable because the free energy released when the protein folded into its native conformation is relatively small. This is because protein folding requires entropic cost. As a primary sequence of a polypeptide chain can form numerous conformations, native globular structure restricts its conformation to a few only. It results in a decrease in randomness, although non-covalent interactions such as hydrophobic interactions stabilize the structure. Although it is still unknown how proteins fold up naturally, new evidence has helped advance understanding. Part of the protein folding problem is that several non-covalent, weak interactions are formed, such as hydrogen bonds and Van der Waals interactions. Via several techniques, the mechanism of protein folding is currently being studied.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
CH-312: Dynamics of biomolecular processes
In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.
BIO-701: Recombinant protein expression in animal cells for appli-cations in medicine and structural biology
Cultivated animal cells are important hosts for the production of recombinant proteins for biochemical and structural studies and for use as therapeutics. The course will provide an overview of the me
CH-311: Macromolecular structure and interactions
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life. The course is held in English.
Afficher plus
Publications associées (73)