MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-436: Homotopical algebraThis course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-688: Reading group in applied topology IThe focus of this reading group is to delve into the concept of the "Magnitude of Metric Spaces". This approach offers an alternative approach to persistent homology to describe a metric space across
MATH-687: Algebraic models for homotopy typesln this course we will develop algebraic and coalgebraic models for homotopy types.
Among other things we will learn about Quillen's and Sullivan's model of rationâl homotopy types and about Mandell's