Personnes associées (35)
Rachid Guerraoui
Rachid Guerraoui has been affiliated with Ecole des Mines of Paris, the Commissariat à l'Energie Atomique of Saclay, Hewlett Packard Laboratories and the Massachusetts Institute of Technology. He has worked in a variety of aspects of distributed computing, including distributed algorithms and distributed programming languages. He is most well known for his work on (e-)Transactions, epidemic information dissemination and indulgent algorithms. He co-authored a book on Transactional Systems (Hermes) and a book on reliable distributed programming (Springer). He was appointed program chair of ECOOP 1999, ACM Middleware 2001, IEEE SRDS 2002, DISC 2004 and ACM PODC 2010. His publications are available at http://lpdwww.epfl.ch/rachid/papers/generalPublis.html
Devis Tuia
I come from Ticino and studied in Lausanne, between UNIL and EPFL. After my PhD at UNIL in remote sensing, I was postdoc in Valencia (Spain), Boulder (CO) and EPFL, working on model adaptation and prior knowledge integration in machine learning. In 2014 I became Research Assistant Professor at University of Zurich, where I started the 'multimodal remote sensing' group. In 2017, I joined Wageningen University (NL), where I was professor of the GeoInformation Science and Remote Sensing Laboratory. Since 2020, I joined EPFL Valais, to start the ECEO lab, working at the interface between Earth observation, machine learning and environmental sciences.
Ali H. Sayed
Ali H. Sayed est doyen de la Faculté des sciences et techniques de l’ingénieur (STI) de l'EPFL, en Suisse, où il dirige également le laboratoire de systèmes adaptatifs.  Il a également été professeur émérite et président du département d'ingénierie électrique de l'UCLA. Il est reconnu comme un chercheur hautement cité et est membre de la US National Academy of Engineering. Il est également membre de l'Académie mondiale des sciences et a été président de l'IEEE Signal Processing Society en 2018 et 2019. Le professeur Sayed est auteur et co-auteur de plus de 570 publications et de six monographies. Ses recherches portent sur plusieurs domaines, dont les théories d'adaptation et d'apprentissage, les sciences des données et des réseaux, l'inférence statistique et les systèmes multi-agents, entre autres. Ses travaux ont été récompensés par plusieurs prix importants, notamment le prix Fourier de l'IEEE (2022), le prix de la société Norbert Wiener (2020) et le prix de l'éducation (2015) de la société de traitement des signaux de l'IEEE, le prix Papoulis (2014) de l'Association européenne de traitement des signaux, le Meritorious Service Award (2013) et le prix de la réalisation technique (2012) de la société de traitement des signaux de l'IEEE, le prix Terman (2005) de la société américaine de formation des ingénieurs, le prix de conférencier émérite (2005) de la société de traitement des signaux de l'IEEE, le prix Koweït (2003) et le prix Donald G. Fink (1996) de l'IEEE. Ses publications ont été récompensées par plusieurs prix du meilleur article de l'IEEE (2002, 2005, 2012, 2014) et de l'EURASIP (2015). Pour finir, Ali H. Sayed est aussi membre de l'IEEE, d'EURASIP et de l'American Association for the Advancement of Science (AAAS), l'éditeur de la revue Science.
Clara Lucía Galimberti
Clara Galimberti is a PhD student at École Polytechnique Fédérale de Lausanne (EPFL) under the supervision of Professor Giancarlo Ferrari Trecate. She received her degree in Electronic Engineering from Universidad Nacional de Rosario (UNR), Argentina, in 2018. Her research lies at the intersection of machine learning and control theory. Currently, she is working on the development of deep networks inspired by dynamical systems and the study of their utilization for the control of complex systems while guaranteeing stability of the closed-loop dynamics, even during the learning phase.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.