Résumé
Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids. The long-chain bases, sometimes simply known as sphingoid bases, are the first non-transient products of de novo sphingolipid synthesis in both yeast and mammals. These compounds, specifically known as phytosphingosine and dihydrosphingosine (also known as sphinganine, although this term is less common), are mainly C18 compounds, with somewhat lower levels of C20 bases. Ceramides and glycosphingolipids are N-acyl derivatives of these compounds. The sphingosine backbone is O-linked to a (usually) charged head group such as ethanolamine, serine, or choline. The backbone is also amide-linked to an acyl group, such as a fatty acid. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways. Sphingoid bases are the fundamental building blocks of all sphingolipids. The main mammalian sphingoid bases are dihydrosphingosine and sphingosine, while dihydrosphingosine and phytosphingosine are the principal sphingoid bases in yeast. Sphingosine, dihydrosphingosine, and phytosphingosine may be phosphorylated. Ceramides, as a general class, are N-acylated sphingoid bases lacking additional head groups. Dihydroceramide is produced by N-acylation of dihydrosphingosine.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
CH-411: Cellular signalling
Presentation of selected signalling pathways with emphasis on both the mechanism of action of the molecules involved, molecular interactions and the role of their spatio-temporal organization within t