Concept

Divide-and-conquer eigenvalue algorithm

Publications associées (47)

RANDOMIZED JOINT DIAGONALIZATION OF SYMMETRIC

Daniel Kressner, Haoze He

Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
Philadelphia2024

Singular quadratic eigenvalue problems: linearization and weak condition numbers

Daniel Kressner, Ivana Sain Glibic

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are ...
SPRINGER2023

The first Grushin eigenvalue on cartesian product domains

Joachim Stubbe, Luigi Provenzano, Paolo Luzzini

In this paper, we consider the first eigenvalue.1(O) of the Grushin operator.G :=.x1 + |x1|2s.x2 with Dirichlet boundary conditions on a bounded domain O of Rd = R d1+ d2. We prove that.1(O) admits a unique minimizer in the class of domains with prescribed ...
WALTER DE GRUYTER GMBH2023

A fast spectral divide-and-conquer method for banded matrices

Daniel Kressner, Ana Susnjara

Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325-A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix with small bandwidth, w ...
WILEY2021

hm-toolbox: MATLAB SOFTWARE FOR HODLR AND HSS MATRICES

Daniel Kressner, Stefano Massei

Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
SIAM PUBLICATIONS2020

hm-toolbox: Matlab software for HODLR and HSS matrices

Daniel Kressner, Stefano Massei

Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.