A nerve guidance conduit (also referred to as an artificial nerve conduit or artificial nerve graft, as opposed to an autograft) is an artificial means of guiding axonal regrowth to facilitate nerve regeneration and is one of several clinical treatments for nerve injuries. When direct suturing of the two stumps of a severed nerve cannot be accomplished without tension, the standard clinical treatment for peripheral nerve injuries is autologous nerve grafting. Due to the limited availability of donor tissue and functional recovery in autologous nerve grafting, neural tissue engineering research has focused on the development of bioartificial nerve guidance conduits as an alternative treatment, especially for large defects. Similar techniques are also being explored for nerve repair in the spinal cord but nerve regeneration in the central nervous system poses a greater challenge because its axons do not regenerate appreciably in their native environment.
The creation of artificial conduits is also known as entubulation because the nerve ends and intervening gap are enclosed within a tube composed of biological or synthetic materials. Whether the conduit is in the form of a biologic tube, synthetic tube or tissue-engineered conduit, it should facilitate neurotropic and neurotrophic communication between the proximal and distal ends of the nerve gap, block external inhibitory factors, and provide a physical guidance for axonal regrowth. The most basic objective of a nerve guidance conduit is to combine physical, chemical, and biological cues under conditions that will foster tissue formation.
Materials that have been used to make biologic tubes include blood vessels and skeletal muscles, while nonabsorbable and bioabsorbable synthetic tubes have been made from silicone and polyglycolide respectively. Tissue-engineered nerve guidance conduits are a combination of many elements: scaffold structure, scaffold material, cellular therapies, neurotrophic factors and biomimetic materials.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Neuroengineering is at the frontier between neuroscience and engineering: understanding how the brain works allows developing engineering applications and therapies of high impact, while the design of
La neuroregénération est le renouvellement des neurones (uniquement artificiel dans toutes les zones du cerveau exceptés la zone sous-ventriculaire de l'hippocampe et le striatum chez l'homme et la plupart des autres mammifères), leur réparation ou la repousse du tissus nerveux (axones et synapses), endommagés par exemple par une maladie neurodégénérative, l'absence de sommeil, ou un neurotoxique. Les blessures du système nerveux affectent plus de par année, dont à la moelle épinière.
Les cellules de Schwann (ou neurolemmocytes) sont une variété de cellules gliales qui assurent principalement l'isolation myélinique des axones du système nerveux périphérique des chordés (on les classe donc parmi les « cellules gliales périphériques »). Comme les oligodendrocytes du système nerveux central, elles assurent la myélinisation — c'est-à-dire l'isolation électrique — des axones mais dans le système nerveux périphérique. Il existe néanmoins de petites différences entre ces deux types de cellules.
Explore le paradigme de l'ingénierie tissulaire, en se concentrant sur les étapes de l'isolement cellulaire, les cellules de semis sur un échafaudage, la stimulation cellulaire dans un bioréacteur, et l'implantation de constructions artificielles tissulaires.
Explore l'optimisation des systèmes neuroprothétiques, y compris la restauration de rétroaction sensorielle et les stratégies de stimulation neuronale.
Couvre l'ingénierie des tissus neuraux, les lésions nerveuses, la réparation de la moelle épinière, les biomatériaux dans la régénération du cerveau et la récupération post-AVC.
Engineered grafts constitute an alternative to autologous transplant for repairing severe peripheral nerve injuries. However, current clinically available solutions have substantial limitations and are not suited for the repair of long nerve defects. A nov ...
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the ner ...
Nerve conduits may represent a valuable alternative to autograft for the regeneration of long-gap damages. However, no NCs have currently reached market approval for the regeneration of limiting gap lesions, which still represents the very bottleneck of th ...