Concept

Groupe de Held

En mathématiques, le groupe de Held, He, est l'unique groupe sporadique d'ordre 2 · 3 · 5 · 7 · 17 = . Il peut être défini en termes de générateurs a et b et de relations : Il a été nommé ainsi en l'honneur du mathématicien . Il a été découvert par Held lors d'une recherche des groupes simples contenant un élément d'ordre 2 dont le centralisateur est isomorphe au centralisateur d'un élément d'ordre 2 du groupe de Mathieu M24. Une seconde possibilité est le groupe projectif spécial linéaire L(2). Le groupe de Held est la troisième possibilité. Sa construction a été achevée par John McKay et Graham Higman. Le groupe de Held a un multiplicateur de Schur d'ordre 1 et un groupe d'automorphismes extérieurs d'ordre 2. Il agit sur une algèbre vertex sur le corps fini à 7 éléments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.