In mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups.
If G is a reductive algebraic group and is the Langlands decomposition of a parabolic subgroup P, then parabolic induction consists of taking a representation of , extending it to P by letting N act trivially, and inducing the result from P to G.
There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory.
The philosophy of cusp forms was a slogan of Harish-Chandra, expressing his idea of a kind of reverse engineering of automorphic form theory, from the point of view of representation theory. The discrete group Γ fundamental to the classical theory disappears, superficially. What remains is the basic idea that representations in general are to be constructed by parabolic induction of cuspidal representations. A similar philosophy was enunciated by Israel Gelfand, and the philosophy is a precursor of the Langlands program. A consequence for thinking about representation theory is that cuspidal representations are the fundamental class of objects, from which other representations may be constructed by procedures of induction.
According to Nolan Wallach
Put in the simplest terms the "philosophy of cusp forms" says that for each Γ-conjugacy classes of Q-rational parabolic subgroups one should construct automorphic functions (from objects from spaces of lower dimensions) whose constant terms are zero for other conjugacy classes and the constant terms for [an] element of the given class give all constant terms for this parabolic subgroup. This is almost possible and leads to a description of all automorphic forms in terms of these constructs and cusp forms. The construction that does this is the Eisenstein series.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
En mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
En mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...
In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involve ...
We study p-adic families of cohomological automorphic forms for GL(2) over imaginary quadratic fields and prove that families interpolating a Zariski-dense set of classical cuspidal automorphic forms only occur under very restrictive conditions. We show ho ...