COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-105: Advanced physics II (thermodynamics)Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MATH-251(a): Numerical analysisThis course presents numerical methods for the solution of mathematical problems such as systems of linear and non-linear equations, functions approximation, integration and differentiation, and diffe
ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops