L'icosaèdre métabidiminué est un polyèdre faisant partie des solides de Johnson (J62). Comme le nom l'indique, il peut être construit en diminuant doublement un icosaèdre en détachant deux pyramides pentagonales (J2).
Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966.
MathWorld.wolfram.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In geometry, the gyroelongated pentagonal pyramid is one of the Johnson solids (J_11). As its name suggests, it is formed by taking a pentagonal pyramid and "gyroelongating" it, which in this case involves joining a pentagonal antiprism to its base. It can also be seen as a diminished icosahedron, an icosahedron with the top (a pentagonal pyramid, J_2) chopped off by a plane. Other Johnson solids can be formed by cutting off multiple pentagonal pyramids from an icosahedron: the pentagonal antiprism and metabidiminished icosahedron (two pyramids removed), and the tridiminished icosahedron (three pyramids removed).
En géométrie, la pyramide pentagonale est un des solides de Johnson (J2). Comme toute pyramide, c'est un polyèdre autodual. Il peut être vu comme le "couvercle" d'un icosaèdre; le reste de l'icosaèdre forme la pyramide pentagonale gyroallongée, J11. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966. Plus généralement, une pyramide pentagonale de sommet uniforme d'ordre 2 peut être définie avec une base pentagonale régulière et 5 côtés en forme de triangles isocèles de hauteur quelconque.
En géométrie, un solide de Johnson est un polyèdre strictement convexe dont chaque face est un polygone régulier et qui n'est pas isogonal (qui n'est donc ni un solide de Platon, ni un solide d'Archimède, ni un prisme ni un antiprisme). Il n'est pas nécessaire que chaque face soit un polygone identique, ou que les mêmes polygones se rejoignent autour de chaque sommet. Un exemple de solide de Johnson est la pyramide à base carrée avec des côtés triangulaires équilatéraux (J1) ; il possède une face carrée et quatre faces triangulaires.