In finance, statistical arbitrage (often abbreviated as Stat Arb or StatArb) is a class of short-term financial trading strategies that employ mean reversion models involving broadly diversified portfolios of securities (hundreds to thousands) held for short periods of time (generally seconds to days). These strategies are supported by substantial mathematical, computational, and trading platforms.
Broadly speaking, StatArb is actually any strategy that is bottom-up, beta-neutral in approach and uses statistical/econometric techniques in order to provide signals for execution. Signals are often generated through a contrarian mean reversion principle but can also be designed using such factors as lead/lag effects, corporate activity, short-term momentum, etc. This is usually referred to as a multi-factor approach to StatArb.
Because of the large number of stocks involved, the high portfolio turnover and the fairly small size of the effects one is trying to capture, the strategy is often implemented in an automated fashion and great attention is placed on reducing trading costs.
Statistical arbitrage has become a major force at both hedge funds and investment banks. Many bank proprietary operations now center to varying degrees around statistical arbitrage trading.
As a trading strategy, statistical arbitrage is a heavily quantitative and computational approach to securities trading. It involves data mining and statistical methods, as well as the use of automated trading systems.
Historically, StatArb evolved out of the simpler pairs trade strategy, in which stocks are put into pairs by fundamental or market-based similarities. When one stock in a pair outperforms the other, the under performing stock is bought long and the outperforming stock is sold short with the expectation that under performing stock will climb towards its outperforming partner.
Mathematically speaking, the strategy is to find a pair of stocks with high correlation, cointegration, or other common factor characteristics.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En finance, l'analyse quantitative est l'utilisation de mathématiques financières, souvent dérivées des probabilités, pour mettre au point et utiliser des modèles permettant aux gestionnaires de fonds et autres spécialistes financiers de s'attaquer à deux problèmes : mieux évaluer la valeur des actifs financiers, et surtout leurs dérivés. Ces dérivés peuvent être des produits comme les warrants, les certificats ou tout autre type de dérivé ou d'option (contrats Futures sur matières premières, indices, etc.
Le trading algorithmique, aussi appelé trading automatisé ou trading automatique, boîte noire de négociation (en anglais : black-box trading), effectué par des robots de trading ou robots traders, est une forme de trading avec utilisation de plates-formes électroniques pour la saisie des ordres de bourse en laissant un algorithme décider des différents aspects de l'ordre, tel que l'instant d'ouverture ou de clôture (le timing), le prix ou le volume de l'ordre et ceci, dans de nombreux cas, sans la moindre in
L'arbitrage est une opération financière destinée à assurer un gain positif ou nul de manière certaine en profitant d'écarts temporaires de prix constatés entre différents titres ou contrats. Par exemple en prenant position simultanément et en sens contraire soit sur plusieurs actifs dérivés différents soit sur un produit dérivé et son actif sous-jacent.
This is a doctoral level course introducing students to important topics in international finance. It also covers aspects of the recent financial crisis, such as market contagions, regulatory arbitrag
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f
Présente l'histoire et les concepts des produits dérivés, y compris les contrats à terme, les options et leur utilisation dans la couverture et la spéculation.
The creation of high fidelity synthetic data has long been an important goal in machine learning, particularly in fields like finance where the lack of available training and test data make it impossible to utilize many of the deep learning techniques whic ...
2022
We investigate the cross-sectional variation in the credit default swap (CDS)-bond bases and test explanations for the violation of the arbitrage relation between cash bond and CDS contract, which states that the basis should be zero in normal conditions. ...
WILEY2019
We investigate why only some banks use regulatory arbitrage. We predict that banks wanting to be riskier than allowed by capital regulations (constrained banks) use regulatory arbitrage, while others do not. We find support for this hypothesis using trust- ...