In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals. The dimension of the space of differentials of the first kind, by means of this identification, is the Hodge number h1,0. The differentials of the first kind, when integrated along paths, give rise to integrals that generalise the elliptic integrals to all curves over the complex numbers. They include for example the hyperelliptic integrals of type where Q is a square-free polynomial of any given degree > 4. The allowable power k has to be determined by analysis of the possible pole at the point at infinity on the corresponding hyperelliptic curve. When this is done, one finds that the condition is k ≤ g − 1, or in other words, k at most 1 for degree of Q 5 or 6, at most 2 for degree 7 or 8, and so on (as g = [(1+ deg Q)/2]). Quite generally, as this example illustrates, for a compact Riemann surface or algebraic curve, the Hodge number is the genus g. For the case of algebraic surfaces, this is the quantity known classically as the irregularity q. It is also, in general, the dimension of the Albanese variety, which takes the place of the Jacobian variety. The traditional terminology also included differentials of the second kind and of the third kind. The idea behind this has been supported by modern theories of algebraic differential forms, both from the side of more Hodge theory, and through the use of morphisms to commutative algebraic groups.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.