Explore les modèles de signaux concis, la détection compressive, la parcimonie, les normes atomiques et la minimisation non lisse en utilisant la descente de sous-gradient.
Explore la minimisation non lisse, la détection compressive, la récupération de signal clairsemée et les représentations simples à l'aide d'ensembles atomiques et d'atomes.
Couvre les problèmes linéaires, le LASSO et l'AMP dans l'apprentissage supervisé, y compris les modèles linéaires généralisés et les modèles N-dimensionnels.
Explore l'optimalité des splines pour l'imagerie et les réseaux neuraux profonds, démontrant la sparosité et l'optimalité globale avec les activations des splines.
Explore la descente progressive stochastique avec la moyenne, la comparant avec la descente progressive, et discute des défis dans l'optimisation non convexe et les techniques de récupération clairsemées.