The terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related (scope of this article) while mapping refers to the transformations between the objects. For example, in the two schemas DB1.Student (Name, SSN, Level, Major, Marks) and DB2.Grad-Student (Name, ID, Major, Grades); possible matches would be: DB1.Student ≈ DB2.Grad-Student; DB1.SSN = DB2.ID etc. and possible transformations or mappings would be: DB1.Marks to DB2.Grades (100-90 A; 90-80 B: etc.). Automating these two approaches has been one of the fundamental tasks of data integration. In general, it is not possible to determine fully automatically the different correspondences between two schemas — primarily because of the differing and often not explicated or documented semantics of the two schemas. Among others, common challenges to automating matching and mapping have been previously classified in especially for relational DB schemas; and in – a fairly comprehensive list of heterogeneity not limited to the relational model recognizing schematic vs semantic differences/heterogeneity. Most of these heterogeneities exist because schemas use different representations or definitions to represent the same information (schema conflicts); OR different expressions, units, and precision result in conflicting representations of the same data (data conflicts). Research in schema matching seeks to provide automated support to the process of finding semantic matches between two schemas. This process is made harder due to heterogeneities at the following levels Syntactic heterogeneity – differences in the language used for representing the elements Structural heterogeneity – differences in the types, structures of the elements Model / Representational heterogeneity – differences in the underlying models (database, ontologies) or their representations (key-value pairs, relational, document, XML, JSON, triples, graph, RDF, OWL) Semantic heterogeneity – where the same real world entity is represented using different terms or vice versa Discusses a generic methodology for the task of schema integration or the activities involved.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
MATH-251(b): Numerical analysis
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
Séances de cours associées (15)
Systèmes d'information distribués : aperçu et défis
Couvre les défis des systèmes d'information distribués, y compris l'autonomie, l'hétérogénéité, l'évaluation de la confiance et la protection de la vie privée.
Inférence des connaissances
Explore l'inférence des connaissances, les techniques d'intégration et la correspondance des schémas dans l'intégration des données.
Web sémantique : Graphiques de connaissances
Explore la représentation des connaissances, l'extraction de l'information et la vision du Web sémantique, en mettant l'accent sur la normalisation, la cartographie et les ontologies dans la structuration des données.
Afficher plus
Publications associées (40)

Voice-leading Schema Recognition using Rhythm and Pitch Features

Martin Alois Rohrmeier, Markus Franz Josef Neuwirth, Christoph Finkensiep, Ken Jacques Alfonso Deguernel

Musical schemata constitute important structural building blocks used across historical styles and periods. They consist of two or more melodic lines that are combined to form specific successions of intervals. This paper tackles the problem of recognizing ...
ISMIR2020

Metadata standards and tools in Life Sciences – an overview

Eliane Ninfa Blumer, Sitthida Samath

In 2020, EPFL Library conducted a study about Tools and Metadata Standards practice in EPFL School of Life Sciences. By standard, we mean: - terminological resources (vocabularies, terminologies, classifications, thesauri), - formats and data models / sche ...
2020

Reconciling Matching Networks of Conceptual Models

Karl Aberer, Quoc Viet Hung Nguyen, Thành Tâm Nguyên, Zoltán Miklós

Conceptual models such as database schemas, ontologies or process models have been established as a means for effective engineering of information systems. Yet, for complex systems, conceptual models are created by a variety of stakeholders, which calls fo ...
2019
Afficher plus
Concepts associés (2)
Consolidation informatique
La consolidation est en informatique le regroupement cohérent de données. Elle concerne généralement des données organisées logiquement ou liées entre elles. Plus spécifiquement pour les tableurs, il s’agit du regroupement de plusieurs tableaux issus de feuilles différentes (les feuilles sont des composantes des tableurs) voire de classeurs différents. La consolidation de données consiste à rassembler plusieurs données semblables afin d’obtenir un rapport plus facile à consulter que l’information brute présente sur le serveur, avec le moins de perte d’information possible.
Database schema
The database schema is the structure of a database described in a formal language supported typically by a relational database management system (RDBMS). The term "schema" refers to the organization of data as a blueprint of how the database is constructed (divided into database tables in the case of relational databases). The formal definition of a database schema is a set of formulas (sentences) called integrity constraints imposed on a database. These integrity constraints ensure compatibility between parts of the schema.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.