The terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related (scope of this article) while mapping refers to the transformations between the objects. For example, in the two schemas DB1.Student (Name, SSN, Level, Major, Marks) and DB2.Grad-Student (Name, ID, Major, Grades); possible matches would be: DB1.Student ≈ DB2.Grad-Student; DB1.SSN = DB2.ID etc. and possible transformations or mappings would be: DB1.Marks to DB2.Grades (100-90 A; 90-80 B: etc.). Automating these two approaches has been one of the fundamental tasks of data integration. In general, it is not possible to determine fully automatically the different correspondences between two schemas — primarily because of the differing and often not explicated or documented semantics of the two schemas. Among others, common challenges to automating matching and mapping have been previously classified in especially for relational DB schemas; and in – a fairly comprehensive list of heterogeneity not limited to the relational model recognizing schematic vs semantic differences/heterogeneity. Most of these heterogeneities exist because schemas use different representations or definitions to represent the same information (schema conflicts); OR different expressions, units, and precision result in conflicting representations of the same data (data conflicts). Research in schema matching seeks to provide automated support to the process of finding semantic matches between two schemas. This process is made harder due to heterogeneities at the following levels Syntactic heterogeneity – differences in the language used for representing the elements Structural heterogeneity – differences in the types, structures of the elements Model / Representational heterogeneity – differences in the underlying models (database, ontologies) or their representations (key-value pairs, relational, document, XML, JSON, triples, graph, RDF, OWL) Semantic heterogeneity – where the same real world entity is represented using different terms or vice versa Discusses a generic methodology for the task of schema integration or the activities involved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
MATH-251(b): Numerical analysis
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
Related publications (40)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.