Braid groupIn mathematics, the braid group on n strands (denoted ), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry.
Nœud de trèflevignette|Faire un nœud de trèfle (vidéo) vignette|Surface de Seifert associée à un nœud de trèfle : il en forme le bord. En théorie des nœuds, le nœud de trèfle est le nœud le plus simple après le nœud trivial. C'est le seul nœud premier à trois croisements. On peut aussi le décrire comme nœud torique de type (2,3), son mot dans le groupe de tresses étant σ13. Une autre description (liée à la précédente) est l'intersection de la sphère unité dans C2 avec la courbe plane complexe d'équation .
Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Invariant de nœudsthumb|Les deux nœuds sont équivalents, leur invariant est donc identique. En théorie des nœuds, un invariant de nœuds est une quantité définie pour chaque nœud qui est la même pour tous les nœuds équivalents. On parlera d'équivalence lorsqu'on peut passer d'un nœud à un autre par un ensemble de mouvements de Reidemeister. Ces invariants topologiques peuvent être de tout type : des booléens, des scalaires, des polynômes (polynôme d'Alexander, le polynôme de Jones, le ) ou encore le groupe fondamental du complément d'un nœud, les de Vassiliev et l'.
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).