Un magnétar ou une étoile magnétique, une magnétoile selon la dénomination officielle en France, est une étoile à neutrons dont le champ magnétique est extrêmement intense et qui émet un rayonnement électromagnétique de haute énergie (rayons X et rayons gamma).
L'existence des magnétars est postulée en 1992 par les astronomes et , qui établissent un lien entre la théorie des champs magnétiques intenses et les observations des sources gamma. Dans la décennie qui suit, elle est acceptée comme explication plausible des sursauteurs gamma mous et des pulsars X anormaux.
L'explosion du magnétar est enregistrée en 2004. L'énergie libérée a affecté l'atmosphère supérieure de la Terre, alors que celle-ci se trouvait à de l'explosion (ce qui veut dire que l'explosion a eu lieu il y a environ ).
En 2023, l'une des deux étoiles du système binaire est identifiée comme une étoile Wolf-Rayet ayant une masse de et un champ magnétique de : selon les modèles d'évolution stellaire elle explosera en supernova et laissera comme résidu un magnétar. Cette étoile Wolf-Rayet fortement magnétique résulte plausiblement de la fusion de deux étoiles à hélium de masse inférieure.
vignette|Vue d'artiste du sursaut de .
Lorsqu'une supernova devient une étoile à neutrons, l'intensité de son champ magnétique croît. Duncan et Thompson calculèrent que celui-ci, normalement déjà de , pouvait dépasser dans certaines conditions (). Une telle étoile magnétique est alors nommée magnétar.
En 2001, il est estimé qu'une supernova sur dix donne naissance à un magnétar plutôt qu'à une autre étoile à neutrons ou à un pulsar. Les prérequis sont une rotation rapide et un champ magnétique intense avant l'explosion. Ce champ magnétique serait créé par un générateur électrique utilisant la convection de matière nucléaire durant les dix premières secondes environ de la vie d'une étoile à neutrons. Si cette dernière tourne suffisamment rapidement, les courants de convection deviennent globaux et transfèrent leur énergie au champ magnétique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
Introduction to time-variable astrophysical objects and processes, from Space Weather to stars, black holes, and galaxies. Introduction to time-series analysis, instrumentation targeting variability,
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Couvre les caractéristiques et les origines des naines blanches et des étoiles à neutrons, y compris leur structure, leur évolution et leurs pulsations.
Explore l'histoire, la détection et la signification des ondes gravitationnelles, couvrant des expériences et des projets clés en astronomie des ondes gravitationnelles.
thumb|Vue artistique d'un pulsar tirant de la matière d'une étoile proche. Un pulsar est un objet astronomique produisant un signal périodique allant de l'ordre de la milliseconde à quelques dizaines de secondes. Ce serait une étoile à neutrons tournant très rapidement sur elle-même (période typique de l'ordre de la seconde, voire beaucoup moins pour les pulsars milliseconde) et émettant un fort rayonnement électromagnétique dans la direction de son axe magnétique.
vignette|Des rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques. Un rayon gamma (ou rayon γ) est un rayonnement électromagnétique à haute fréquence émis lors de la désexcitation d'un noyau atomique résultant d'une désintégration. Les photons émis sont caractérisés par des énergies allant de quelques keV à plusieurs centaines de GeV voire jusqu'à pour le plus énergétique jamais observé. Les rayons gamma furent découverts en 1900 par Paul Villard, chimiste français.
Un sursauteur gamma mou (en anglais Soft gamma repeater, SGR) est une source astrophysique de rayons gamma connaissant des épisodes d'émission violents et récurrents mais irréguliers. On pense aujourd'hui qu'il s'agit d'étoiles à neutrons jeunes à fort champ magnétique. Les sursauteurs gamma mous ont dans un premier temps été observés et considérés comme étant des sursauts gamma, c'est-à-dire des explosions de type supernova, mais asymétriques, observables à des distances cosmologiques.
We investigate the fueling mechanisms of supermassive black holes (SMBHs) by analyzing 10 zoom-in cosmological simulations of massive galaxies, with stellar masses 1011-12 M circle dot and SMBH masses 108.9-9.7 M circle dot at z = 0, featuring various majo ...
We describe a novel method to compute the components of dynamo tensors from direct magnetohydrodynamic (MHD) simulations. Our method relies upon an extension and generalization of the standard H & ouml;gbom CLEAN algorithm widely used in radio astronomy to ...
Oxford Univ Press2024
This study focuses on Pristine_180956.78-294759.8 (hereafter P180956, [Fe/H] = -1.95 +/- 0.02), a star selected from the Pristine Inner Galaxy Survey (PIGS), and followed-up with the recently commissioned Gemini High-resolution Optical SpecTrograph (GHOST) ...