We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance i ...
The paperpresents a comprehensive approach for full-wave modeling of grounding systems buried in a multilayer stratified ground. The dyadic spectral domain Green's function associated with the multilayer stratified ground is first derived. This Green's fun ...
Institute of Electrical and Electronics Engineers2017
In this study, we investigate the mass transport effects of various flow field designs paired with raw and laser perforated carbon paper electrodes in redox flow batteries (RFBs). Previously, we observed significant increases in peak power density and limi ...
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. H ...
The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of ...
We describe particular paths in the flip-graph of regular triangulations in any dimension. It is shown that any pair of regular triangulations is connected by a path along which none of their common faces are destroyed. As a consequence, we obtain the conn ...