Discute du gradient des politiques et des méthodes acteurs-critiques, en se concentrant sur les traces d'éligibilité et leur application dans les tâches d'apprentissage de renforcement.
Explore l'algorithme SARSA pour l'apprentissage par renforcement, en mettant l'accent sur la mise à jour des valeurs Q et l'importance de l'exploration dans l'apprentissage par récompenses.
Explore la modélisation d'espaces d'entrée continus dans l'apprentissage par renforcement à l'aide de réseaux de neurones et de fonctions de base radiales.