Explore le passage à l'apprentissage par renforcement profond à travers les réseaux neuronaux pour l'apprentissage direct des politiques, en contournant les valeurs Q et V.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Couvre les méthodes de prédiction sans modèle dans l'apprentissage par renforcement, en se concentrant sur Monte Carlo et les différences temporelles pour estimer les fonctions de valeur sans connaissance de la dynamique de transition.
Explore les traces d'éligibilité dans les architectures de gradient de politique et d'acteur-critique, conduisant à une règle d'apprentissage en ligne élégante.
S'insère dans la dynamique de l'apprentissage collectif avec exploitation de la similitude, couvrant l'apprentissage structuré, les cadres d'adaptation, la modélisation, la simulation et les résultats expérimentaux.
Explore les méthodes de Monte-Carlo pour l'apprentissage par renforcement, en les comparant avec les méthodes TD et en mettant l'accent sur l'efficacité des méthodes TD dans la propagation de l'information.