Résumé
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. With the usual order on the real numbers, the least fixed point of the real function f(x) = x2 is x = 0 (since the only other fixed point is 1 and 0 < 1). In contrast, f(x) = x + 1 has no fixed points at all, so has no least one, and f(x) = x has infinitely many fixed points, but has no least one. Let be a directed graph and be a vertex. The set of vertices accessible from can be defined as the least fixed-point of the function , defined as The set of vertices which are co-accessible from is defined by a similar least fix-point. The strongly connected component of is the intersection of those two least fixed-points. Let be a context-free grammar. The set of symbols which produces the empty string can be obtained as the least fixed-point of the function , defined as , where denotes the power set of . Many fixed-point theorems yield algorithms for locating the least fixed point. Least fixed points often have desirable properties that arbitrary fixed points do not. Denotational semantics#Meanings of recursive programs In computer science, the denotational semantics approach uses least fixed points to obtain from a given program text a corresponding mathematical function, called its semantics. To this end, an artificial mathematical object, , is introduced, denoting the exceptional value "undefined". Given e.g. the program datatype int, its mathematical counterpart is defined as it is made a partially ordered set by defining for each and letting any two different members be uncomparable w.r.t. , see picture. The semantics of a program definition int f(int n){...
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.