Concept

QM/MM

Résumé
The hybrid QM/MM (quantum mechanics/molecular mechanics) approach is a molecular simulation method that combines the strengths of ab initio QM calculations (accuracy) and MM (speed) approaches, thus allowing for the study of chemical processes in solution and in proteins. The QM/MM approach was introduced in the 1976 paper of Warshel and Levitt. They, along with Martin Karplus, won the 2013 Nobel Prize in Chemistry for "the development of multiscale models for complex chemical systems". An important advantage of QM/MM methods is their efficiency. The cost of doing classical molecular mechanics (MM) simulations in the most straightforward case scales as O(N2), where N is the number of atoms in the system. This is mainly due to electrostatic interactions term (every particle interacts with everything else). However, use of cutoff radius, periodic pair-list updates and more recently the variations of the particle mesh Ewald (PME) method has reduced this to between O(N) to O(N2). In other words, if a system with twice as many atoms is simulated then it would take between twice to four times as much computing power. On the other hand, the simplest ab initio calculations formally scale as O(N3) or worse (restricted Hartree–Fock calculations have been suggested to scale ~O(N2.7)). Here in the ab initio calculations, N stands for the number of basis functions rather than the number of atoms. Each atom has at least as many basis functions as is the number of electrons. To overcome the limitation, a small part of the system that is of major interest is treated quantum-mechanically (for instance, the active site of an enzyme) and the remaining system is treated classically. The energy of the combined system may be calculated in two different ways. The simplest is referred to as the 'subtractive scheme' which was proposed by Maseras and Morokuma in 1995. In the subtractive scheme the energy of the entire system is calculated using a molecular mechanics force field, then the energy of the QM system is added (calculated using a QM method), finally the MM energy of the QM system is subtracted.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.