The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls. Several reviews have been published describing advancements and the development of the Suzuki reaction. The general scheme for the Suzuki reaction is shown below, where a carbon-carbon single bond is formed by coupling a halide (R1-X) with an organoboron species (R2-BY2) using a palladium catalyst and a base. The organoboron species is usually synthesized by hydroboration or carboboration, allowing for rapid generation of molecular complexity.
The mechanism of the Suzuki reaction is best viewed from the perspective of the palladium catalyst. The catalytic cycle is initiated by the formation of an active Pd0 catyltic species, A. This participates in the oxidative addition of palladium to the halide reagent 1 to form the organopalladium intermediate B. Reaction (metathesis) with base gives intermediate C, which via transmetalation with the boron-ate complex D (produced by reaction of the boronic acid reagent 2 with base) forms the transient organopalladium species E. Reductive elimination step leads to the formation of the desired product 3 and restores the original palladium catalyst A which completes the catalytic cycle.
The Suzuki coupling takes place in the presence of a base and for a long time the role of the base was not fully understood. The base was first believed to form a trialkyl borate (R3B-OR), in the case of a reaction of an trialkylborane (BR3) and alkoxide (−OR); this species could be considered as being more nucleophilic and then more reactive towards the palladium complex present in the transmetalation step.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
La réaction de Heck est la réaction chimique entre un dérivé halogéné insaturé ou un triflate insaturé avec un alcène en présence d'une base et d'un catalyseur au palladium pour former un alcène substitué. Cette réaction a été introduite par le chimiste américain Richard Heck qui a reçu en 2010 le prix Nobel de chimie pour cette réaction. La réaction est réalisée en présence d'un catalyseur au palladium. Le catalyseur peut être le tetrakis(triphenylphosphine)palladium(0) ou l'acétate de palladium(II).
La réaction de Stille ou couplage de Stille est une réaction chimique entre un composé organostannique et un dérivé halogéné hybridé sp2 avec un catalyseur au palladium : La réaction de Stille a été découverte en 1977 par John Kenneth Stille et David Milstein, un étudiant post-doctorant. La réaction de Stille est très utilisée en synthèse organique et dans les industries notamment les industries pharmaceutiques. La réaction fonctionne aussi avec des triflates comme groupe partant.
Le couplage de Sonogashira est une réaction de couplage direct entre un halogénure d'aryle et un alcyne terminal, catalysée par un complexe de palladium et un sel de cuivre(I) en tant que co-catalyseur. Cette réaction a été publiée par Kenkichi Sonogashira et Nobue Hagihara en 1975. Solvant de type amine. vignette|droite|450px|Mécanisme réactionnel A-B : Addition oxydante B-C (couplé avec F-G) : Transmetallation de l'alcyne du cuivre au complexe de palladium C-D : Réorganisation des ligands du palladium D-A : Elimination réductrice De plus, le couplage de Sonogashira comprend un co-cycle E-F-G qui permet in fine la transmétallation de l'alcyne sur le palladium.
Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroaryla ...
Bicyclic carbocycles containing a high fraction of Csp3 have become highly attractive synthetic targets because of the multiple applications they have found in medicinal chemistry. The formal cycloaddition of bicyclobutanes (BCBs) with two- or three-atom p ...
Among the numerous existing chemical motifs, alkenes, alkynes, enol ethers and enamides, with an unsaturated carbon-carbon bond, are versatile functional groups that are found in many natural products and bioactive compounds. They are widely used as valuab ...