Concept

Camera matrix

In computer vision a camera matrix or (camera) projection matrix is a matrix which describes the mapping of a pinhole camera from 3D points in the world to 2D points in an image. Let be a representation of a 3D point in homogeneous coordinates (a 4-dimensional vector), and let be a representation of the image of this point in the pinhole camera (a 3-dimensional vector). Then the following relation holds where is the camera matrix and the sign implies that the left and right hand sides are equal except for a multiplication by a non-zero scalar : Since the camera matrix is involved in the mapping between elements of two projective spaces, it too can be regarded as a projective element. This means that it has only 11 degrees of freedom since any multiplication by a non-zero scalar results in an equivalent camera matrix. The mapping from the coordinates of a 3D point P to the 2D image coordinates of the point's projection onto the image plane, according to the pinhole camera model, is given by where are the 3D coordinates of P relative to a camera centered coordinate system, are the resulting image coordinates, and f is the camera's focal length for which we assume f > 0. Furthermore, we also assume that x3 > 0. To derive the camera matrix, the expression above is rewritten in terms of homogeneous coordinates. Instead of the 2D vector we consider the projective element (a 3D vector) and instead of equality we consider equality up to scaling by a non-zero number, denoted . First, we write the homogeneous image coordinates as expressions in the usual 3D coordinates. Finally, also the 3D coordinates are expressed in a homogeneous representation and this is how the camera matrix appears: or where is the camera matrix, which here is given by and the corresponding camera matrix now becomes The last step is a consequence of itself being a projective element. The camera matrix derived here may appear trivial in the sense that it contains very few non-zero elements. This depends to a large extent on the particular coordinate systems which have been chosen for the 3D and 2D points.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-442: Computer vision
Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors. We will focus on images acquired using digital cameras. We will int
Séances de cours associées (13)
Appareil photo : Basics
Couvre les bases d'une caméra sténopé et l'impact de la modification des paramètres sur la qualité de l'image.
Raytracing Intro
Introduit le raytracing pour générer des images numériques réalistes de scènes 3D.
Du monde aux images : radiométrie et capteurs
Couvre la radiométrie, le vignettage, les réseaux de capteurs, la détection et les capteurs dans l'imagerie par caméra.
Afficher plus
Publications associées (19)

From Probability Graphical Models to Dynamic Networks — A Bayesian perspective on Smooth Best Estimate of Trajectory with applications in Geodetic Engineering

Laurent Valentin Jospin, Jesse Ray Murray Lahaye

Bayesian statistics is concerned with the integration of new information obtained through observations with prior knowledge, and accordingly, is often related to information theory (Jospin 2022). Recursive Bayesian estimation methods, such as Kalman Filter ...
2023

Using Animal Motion Capture to Learn Neural Representations

Semih Günel

Understanding behavior from neural activity is a fundamental goal in neuroscience. It has practical applications in building robust brain-machine interfaces, human-computer interaction, and assisting patients with neurological disabilities. Despite the eve ...
EPFL2022

Multi-View Triangulation: Systematic Comparison and an Improved Method

Peng Song

Triangulation is an important task in the 3D reconstruction of computer vision. It seems simple to find the position of a point in 3D space when its 2D perspective projections in multi-view images are given and the corresponding camera projection matrices ...
2020
Afficher plus
Personnes associées (2)
Concepts associés (1)
Calibration de caméra
En , l'opération de calibration de caméra revient à modéliser le processus de formation des s, c'est-à-dire trouver la relation entre les coordonnées spatiales d'un point de l'espace avec le point associé dans l'image prise par la caméra. Le terme calibration est un anglicisme dont l'équivalent français est étalonnage. On note aussi que le terme calibrage est couramment utilisé. Plusieurs modèles décrivant le processus de formation des images existent. Le plus simple est le modèle du sténopé ou modèle pin-hole dans la littérature anglo-saxonne.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.