CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
DH-405: Foundations of digital humanitiesThis course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
CS-455: Topics in theoretical computer scienceThe students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
EE-619: Advanced topics in network neuroscienceThe main goal of this course is to give the student a solid introduction into approaches, methods, and tools for brain network analysis. The student will learn about principles of network science and
MATH-261: Discrete optimizationThis course is an introduction to linear and discrete optimization.
Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
MATH-260(a): Discrete mathematicsStudy of structures and concepts that do not require the notion of continuity. Graph theory, or study of general countable sets are some of the areas that are covered by discrete mathematics. Emphasis