Résumé
La guanine est une base nucléique, et plus exactement une base purique (voir aussi ADN et ARN). On la trouve sous forme de nucléotide : dans l'ADN c'est la dGMP pour désoxyguanosine monophosphate ou désoxyguanylate, et dans l'ARN la GMP pour guanosine monophosphate ou guanylate. La guanine s'apparie avec la cytosine dans l'ADN comme dans l'ARN et existe sous 6 formes tautomères dont 4 stéréoisomères (1,9H, 1,7H, 3,9H et 3,7H) et 2 tautomères avec un groupe fonctionnel différent (7,11H et 9,11H : oxo- en hydroxy-). Comme l'adénine et la cytosine, la guanine est présente à la fois dans l'ARN et dans l'ADN. Elle s'apparie à la cytosine par 3 liaisons hydrogène. Le groupe aminé de la cytosine agit comme donneur pour la création des liaisons hydrogène, tandis que les groupes carbonyle C-2 et amine N-3 agissent comme récepteurs. À l'inverse, le groupe carbonyle C-6 de la guanine agit comme receveur tandis que les groupes N-1 et C-2 agissent comme donneurs. centre|thumb|239x239px|Ponts hydrogène entre une guanine et une cytosine La guanine a été isolée pour la première fois en 1844 à partir d'excréments d'oiseaux qui étaient utilisés comme fertilisants. Entre 1882 et 1906, Fischer en détermina la structure et démontra que l'acide urique pouvait être converti en guanine. La guanine peut être hydrolysée en glycine, ammoniac, dioxyde de carbone et monoxyde de carbone à l'aide d'acides forts. La guanine est tout d'abord désaminée en xanthine. La guanine s'oxyde plus facilement que l'adénine, qui est l'autre base purique de l'ADN. Son point de fusion élevé (plus de ) reflète les ponts hydrogène entre les groupes oxo et amino entre les molécules. À cause de ces liaisons intermoléculaires, la guanine est relativement insoluble dans l'eau, mais soluble dans les acides dilués et les bases. Des traces de guanine se forment par polymérisation de cyanure d'ammonium (NH4CN). Deux expériences conduites par Levy et al. ont montré que chauffer 10 mol·L−1 de NH4CN à 80 °C pendant 24 heures donnait un rendement de 0,0007 %, tandis qu'utiliser 0.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
CH-210: Biochemistry
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
BIO-109: Introduction to life sciences (for IC)
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
Afficher plus
Séances de cours associées (23)
Nucléotides : structure et fonction
Couvre la structure des nucléotides, de l'ADN, de l'ARN, de l'appariement des bases et de la synthèse des protéines.
Synthase ATP: Structure et fonction
Explore la structure et la fonction de l'ATP synthase dans la production d'ATP mitochondriale et se transforme en métabolisme du glucose et en structure nucléotidique.
Acides nucléiques: structure et fonction
Explore la structure et la fonction des acides nucléiques, en se concentrant sur l'ADN et l'ARN, y compris les règles d'appariement des bases et la structure en double hélice.
Afficher plus
Publications associées (11)