Concept

Planche de Tychonoff

En mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω, ω). C'est un espace non normal, bien que localement compact donc complètement régulier. Par conséquent, la planche de Tychonoff n'est pas complètement normale ; c'est pourtant un espace compact donc normal. La planche de Tychonoff n'est pas parfaitement normale (puisqu'elle n'est pas complètement normale, ou encore, puisque le singleton {∞} est fermé mais n'est pas un G).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.