Concept

Topologie de l'ordre

Résumé
En mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique. Nous nous intéressons ici à l'autre approche. Soit (E,≤) un ensemble ordonné (partiellement ou totalement). Considérons deux symboles de flèche et et supposons, pour éviter toute ambiguïté, que ces symboles ne désignent aucun élément de E. La topologie de l'ordre sur (E,≤) est la topologie engendrée par les ensembles qui prennent l'une des 3 formes suivante : où . Un espace topologique ordonné est alors un ensemble ordonné (E,≤) muni de la topologie de l'ordre. De manière équivalente, la topologie de l'ordre est la topologie engendrée par les ensembles de la forme 2 ou 3, les ensembles de la forme 1 sont donc redondants. En effet cela découle du fait que . Lorsque (E, ≤) est totalement ordonné, l'ensemble des parties de la forme 1, 2 ou 3 est stable par intersection finie. De plus, si E contient au moins deux éléments, alors E peut s'écrire comme l'union de tous les ensembles de la forme 2 ou 3. Par conséquent, si E est totalement ordonné et contient au moins deux éléments, alors l'ensemble des parties de la forme 1, 2 ou 3 est une base de la topologie de l'ordre. La topologie de l'ordre usuel sur R est la topologie usuelle. La topologie de l'ordre sur = {–∞}∪R∪{+∞} (isomorphe à [–1, 1] muni de l'ordre usuel) est la topologie de la droite réelle achevée (homéomorphe à [–1, 1] muni de la topologie usuelle). La topologie de l'ordre usuel sur N est la topologie discrète (c'est aussi la topologie usuelle). La topologie de l'ordre sur N∪{+∞}⊂ est le compactifié d'Alexandrov [0, ω] de [0, ω[ = N muni de la topologie discrète.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.