Evolutionary ecology lies at the intersection of ecology and evolutionary biology. It approaches the study of ecology in a way that explicitly considers the evolutionary histories of species and the interactions between them. Conversely, it can be seen as an approach to the study of evolution that incorporates an understanding of the interactions between the species under consideration. The main subfields of evolutionary ecology are life history evolution, sociobiology (the evolution of social behavior), the evolution of interspecific interactions (e.g. cooperation, predator–prey interactions, parasitism, mutualism) and the evolution of biodiversity and of ecological communities. Evolutionary ecology mostly considers two things: how interactions (both among species and between species and their physical environment) shape species through selection and adaptation, and the consequences of the resulting evolutionary change. A large part of evolutionary ecology is about utilising models and finding empirical data as proof. Examples include the Lack clutch size model devised by David Lack and his study of Darwin's finches on the Galapagos Islands. Lack's study of Darwin's finches was important in analyzing the role of different ecological factors in speciation. Lack suggested that differences in species were adaptive and produced by natural selection, based on the assertion by G.F. Gause that two species cannot occupy the same niche. Richard Levins introduced his model of the specialization of species in 1968, which investigated how habitat specialization evolved within heterogeneous environments using the fitness sets an organism or species possesses. This model developed the concept of spatial scales in specific environments, defining fine-grained spatial scales and coarse-grained spatial scales. The implications of this model include a rapid increase in environmental ecologists' understanding of how spatial scales impact species diversity in a certain environment.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (26)
Concepts associés (1)
Biologie de l'évolution
Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes (physical characteristics) of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.