Fonction cubiquevignette|Courbe représentative de la fonction cubique f(x) = (x3 + 3x2 − 6x − 8)/4, qui a 3 racines réelles (où la courbe croise l'axe horizontal — où y = 0) et deux points critiques. En mathématiques, une fonction cubique est une fonction de la forme où a est non nul. L'équation f(x) = 0 est alors une équation cubique. Les solutions de cette équation polynomiale sont appelées zéros de la fonction polynomiale f. vignette|Les racines, les points stationnaires, point d'inflexion et la concavité d'un polynôme cubique (ligne noire) et ses dérivées première et seconde (rouge et bleu).
ExponentiationEn mathématiques, l’exponentiation est une opération binaire non commutative qui étend la notion de puissance d'un nombre en algèbre. Elle se note en plaçant l'un des opérandes en exposant (d'où son nom) de l'autre, appelé base. Pour des exposants rationnels, l'exponentiation est définie algébriquement de façon à satisfaire la relation : Pour des exposants réels, complexes ou matriciels, la définition passe en général par l'utilisation de la fonction exponentielle, à condition que la base admette un logarithme : L'exponentiation ensembliste est définie à l'aide des ensembles de fonctions : Elle permet de définir l'exponentiation pour les cardinaux associés.