Arbre couvrantDans le domaine mathématique de la théorie des graphes, un arbre couvrant d'un graphe non orienté et connexe est un arbre inclus dans ce graphe et qui connecte tous les sommets du graphe. De façon équivalente, c'est un sous-graphe acyclique maximal, ou encore, un sous-graphe couvrant connexe minimal. Dans certains cas, le nombre d'arbres couvrants d'un graphe connexe est facilement calculable. Par exemple, si lui-même est un arbre, alors , tandis que si est un n-cycle, alors .
Graphic matroidIn the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
Component (graph theory)In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.
Arbre (théorie des graphes)En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.