Résumé
Dans le domaine mathématique de la théorie des graphes, un arbre couvrant d'un graphe non orienté et connexe est un arbre inclus dans ce graphe et qui connecte tous les sommets du graphe. De façon équivalente, c'est un sous-graphe acyclique maximal, ou encore, un sous-graphe couvrant connexe minimal. Dans certains cas, le nombre d'arbres couvrants d'un graphe connexe est facilement calculable. Par exemple, si lui-même est un arbre, alors , tandis que si est un n-cycle, alors . Pour un graphe quelconque, peut être calculé grâce au théorème de Kirchhoff. La formule de Cayley permet aussi de calculer directement pour un graphe complet . On obtient que . Si G est un graphe biparti complet , alors est . Les arbres couvrants d’un graphe forment un matroïde, et peuvent donc être énumérés par un algorithme avec délai polynomial. Un problème algorithmique classique est de trouver, dans un graphe pondéré, un arbre couvrant de poids minimal. Le poids peut représenter la difficulté qu'il y a à emprunter une liaison, par exemple une durée de traversée de la liaison élevée. Dans le cas du graphe pondéré aussi, on dispose de plusieurs algorithmes (algorithme de Borůvka, l'algorithme de Prim, algorithme de Kruskal...). Les arbres couvrants sont étudiés en informatique théorique pour leurs applications aux réseaux informatiques. Ils peuvent ainsi définir un chemin permettant de faire passer une information depuis un nœud d'un réseau vers n'importe quel autre nœud, tout en évitant la présence de boucles. Les boucles sont gênantes dans un réseau informatique parce que les informations peuvent emprunter la boucle et tourner plusieurs fois avant d'atteindre leur destination, ou même tourner indéfiniment au sein de la boucle, sans jamais atteindre leur destination. Dans le cas extrême de la tempête de diffusion, le réseau devient inutilisable. L'algorithme Spanning Tree Protocol découvert par Radia Perlman en 1985 permet de trouver un arbre couvrant dans un graphe arbitraire.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (17)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-434: Lattice models
Lattice models consist of (typically random) objects living on a periodic graph. We will study some models that are mathematically interesting and representative of physical phenomena seen in the real
CS-450: Algorithms II
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
Afficher plus