Concept

Modulus and characteristic of convexity

In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity. The modulus of convexity of a Banach space (X, ||·||) is the function δ : [0, 2] → [0, 1] defined by where S denotes the unit sphere of (X, || ||). In the definition of δ(ε), one can as well take the infimum over all vectors x, y in X such that ǁxǁ, ǁyǁ ≤ 1 and ǁx − yǁ ≥ ε. The characteristic of convexity of the space (X, || ||) is the number ε0 defined by These notions are implicit in the general study of uniform convexity by J. A. Clarkson (; this is the same paper containing the statements of Clarkson's inequalities). The term "modulus of convexity" appears to be due to M. M. Day. The modulus of convexity, δ(ε), is a non-decreasing function of ε, and the quotient δ(ε) / ε is also non-decreasing on (0, 2]. The modulus of convexity need not itself be a convex function of ε. However, the modulus of convexity is equivalent to a convex function in the following sense: there exists a convex function δ1(ε) such that The normed space (X, ǁ ⋅ ǁ) is uniformly convex if and only if its characteristic of convexity ε0 is equal to 0, i.e., if and only if δ(ε) > 0 for every ε > 0. The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2. When X is uniformly convex, it admits an equivalent norm with power type modulus of convexity. Namely, there exists q ≥ 2 and a constant c > 0 such that The modulus of convexity is known for the LP spaces. If , then it satisfies the following implicit equation: Knowing that one can suppose that .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.