En mathématiques, un espace uniformément convexe est un espace vectoriel muni d'une norme dont les boules sont « bien arrondies », en un sens plus fort que dans un espace strictement convexe. Tout espace de Banach uniformément convexe est réflexif. Ces espaces comprennent les espaces de Hilbert et les espaces L pour 1 < p < ∞. Un espace uniformément convexe est un espace de Banach — ou seulement, selon les auteurs, un espace vectoriel normé — tel que, pour tout ε > 0, il existe un δ > 0 pour lequel, pour tout couple (x, y) de vecteurs, ou encore : pour tout ε > 0, il existe un η > 0 pour lequel, pour tout couple (x, y) de vecteurs, Le concept de convexité uniforme a été introduit par . De manière intuitive, cela signifie que les boules sont bien arrondies : les cordes suffisamment longues de la sphère ont leur milieu suffisamment loin du bord de la boule, le tout avec un caractère uniforme par rapport aux choix de la longueur de la corde. On peut comparer cette notion avec celle d'espace strictement convexe, moins exigeante. Cette propriété peut ne pas être conservée si on passe à une norme équivalente. Ainsi dans le cas du plan R, la norme ║ ║ est uniformément convexe, alors que les normes ║ ║ ou ║ ║ ne le sont pas. Si E est un espace de Banach uniformément convexe alors, pour toute forme linéaire continue non nulle f sur E, il existe dans E un unique vecteur unitaire x tel que f(x) = ║f║. Supposons, sans perte de généralité, que ║f║ = 1 et soit (x) une suite de vecteurs unitaires telle que f(x) → 1. Alors, par encadrement, ║(x + x)/2║ → 1 quand m, n → ∞ donc, par convexité uniforme, la suite (x) est de Cauchy. Sa limite fournit le x souhaité. Il est unique par convexité stricte. Le théorème de Milman-Pettis énonce que tout espace de Banach uniformément convexe est réflexif.Ce théorème a été prouvé indépendamment par David Milman et Billy James Pettis. Shizuo Kakutani en donna une preuve différente via la propriété de Banach-Saks, puis John Ringrose publia une preuve plus courte.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.