Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore les techniques d'indexation, les fichiers inversés, les algorithmes de réduction de carte et les méthodes de récupération de documents haut de gamme dans les systèmes de récupération de texte.
Explore l'optimisation des modèles d'intégration de mots, y compris la minimisation de la fonction de perte et la descente de gradient, et introduit des techniques comme Fasttext et Byte Pair Encoding.
Explore l'analyse des systèmes de fermes non linéaires, couvrant les réponses de déplacement de force, les principes d'événement à événement et les algorithmes de solution.
Couvre les défis des systèmes d'information distribués, y compris l'autonomie, l'hétérogénéité, l'évaluation de la confiance et la protection de la vie privée.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.
Explore les fonctions t-périodiques de la série Fourier, en discutant des intervalles, des propositions et des changements variables pour le calcul des coefficients et la convergence des séries.
Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.