Dans la théorie des groupes, une branche des mathématiques, une métrique des mots sur un groupe G est une distance sur G, liée au choix préalable d'une partie génératrice S de G : la distance entre deux éléments g, h de G mesure l'efficacité avec laquelle leur « différence » gh peut être exprimée comme un mot sur S. La métrique des mots sur G est très étroitement liée au graphe de Cayley de (G, S) : la distance d(g, h) est la longueur du plus court chemin dans le graphe de Cayley entre g et h.
Différents choix de parties génératrices donneront en général des métriques différentes. Bien que cela semble à première vue être une faiblesse dans le concept de la métrique des mots, cela peut être exploité afin de prouver des théorèmes sur les propriétés géométriques des groupes, comme cela se fait dans la théorie géométrique des groupes.
Le groupe des entiers est engendré par l'ensemble . L'entier peut être exprimé comme un mot de longueur 5 sur ces générateurs. Mais le mot qui exprime plus efficacement est un mot de longueur 3. La distance entre 0 et -3 dans la métrique des mots associée à cette partie génératrice est donc égale à 3. Plus généralement, la distance entre deux nombres entiers et dans cette métrique des mots est égale à , parce que le plus court mot représentant la différence est de longueur égale à .
Pour un exemple plus visuel, les éléments du groupe peuvent être vus comme des vecteurs dans le plan cartésien avec des coordonnées entières. Le groupe est engendré par les vecteurs unité usuels , et leurs opposés respectifs , . Le graphe de Cayley de peut être vu dans le plan comme une grille infinie de rues d'une ville, où chaque ligne verticale ou horizontale avec des coordonnées entières est une rue, et chaque point de
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
En mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
La théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
The goal of this thesis is to introduce the notions of Royden algebra and mapping with bounded p-dilation between metric measure spaces. In particular, we give sufficient conditions for a metric measure space to be characterized, up to bilipschitz equivale ...
Water distribution systems (WDSs) are complex networks with numerous interconnected junctions and pipes. The robustness and reliability of these systems are critically dependent on their network structure, necessitating detailed analysis for proactive leak ...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...