In mathematics, especially homological algebra and other applications of theory, the short five lemma is a special case of the five lemma.
It states that for the following commutative diagram (in any abelian , or in the ), if the rows are short exact sequences, and if g and h are isomorphisms, then f is an isomorphism as well.
It follows immediately from the five lemma.
The essence of the lemma can be summarized as follows: if you have a homomorphism f from an object B to an object , and this homomorphism induces an isomorphism from a subobject A of B to a subobject of and also an isomorphism from the factor object B/A to /, then f itself is an isomorphism. Note however that the existence of f (such that the diagram commutes) has to be assumed from the start; two objects B and that simply have isomorphic sub- and factor objects need not themselves be isomorphic (for example, in the , B could be the cyclic group of order four and the Klein four-group).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Explore la naturalité dans les complexes de chaînes, les groupes d'homologie et les groupes abéliens, en mettant l'accent sur la commutativité des carrés et du Cinq-Lemme.