Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les arbres de décision, l'ajustement excessif et la randomisation dans l'apprentissage supervisé, en soulignant l'importance de la gestion de la variance et de la sélection des fonctionnalités.
Couvre les arbres de décision pour la régression et la classification, expliquant la construction des arbres, la sélection des caractéristiques et les critères d'induction.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Explore le picking automatisé des barres de renforcement dans les données radar pénétrantes au sol à l'aide de techniques d'apprentissage automatique et de traitement du signal.