Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Introduit les bases de l'apprentissage automatique supervisé, couvrant les types, les techniques, le compromis biais-variance et l'évaluation du modèle.
Explore les arbres de décision dans l'apprentissage automatique, leur flexibilité, les critères d'impureté et introduit des méthodes de renforcement comme Adaboost.
Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.
Explore les forêts aléatoires en tant que méthode d'ensemble puissante pour la classification, en discutant des stratégies d'ensachage, d'empilage, de renforcement et d'échantillonnage.
Explore la sélection, l'évaluation et la généralisation des modèles dans l'apprentissage automatique, en mettant l'accent sur l'estimation impartiale des performances et les risques de surapprentissage.
Explore les effets isotopiques cinétiques et les relations linéaires d'énergie libre, en introduisant des méthodes d'apprentissage automatique pour les applications chimiques.