Publications associées (102)

Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange

Sabine Süsstrunk, Mathieu Salzmann, Tong Zhang, Yi Wu

In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can creat ...
2024

Reduced Training Data for Laser Ultrasound Signal Interpretation by Neural Networks

Romain Christophe Rémy Fleury, Janez Rus

The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens ...
2024

Composite Relationship Fields with Transformers for Scene Graph Generation

Alexandre Massoud Alahi, David Mizrahi, George Adaimi

Scene graph generation (SGG) methods extract relationships between objects. While most methods focus on improving top-down approaches, which build a scene graph based on detected objects from an off-the-shelf object detector, there is a limited amount of w ...
2023

Data-Driven Control and Optimization under Noisy and Uncertain Conditions

Baiwei Guo

Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
EPFL2023

Discriminating physiological from non‐physiological interfaces in structures of protein complexes: A community‐wide study

Bruno Emanuel Ferreira De Sousa Correia, Anthony Marchand, Emmanuel Doram Levy, Xiao Wang

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.