Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-truth information. The proposed framework addresses the challenge of labelling datasets with semantic complexities into discrete process dynamics. This novel AE-based in-situ monitoring approach provides a promising alternative to quantify part density in LPBF process. The study demonstrates the effectiveness of a Bayesian encoder backbone for learning the manifold representations of LPBF regimes, which were visually separable in a lower-dimensional representation using t-distributed stochastic neighbour embedding. The generalized representations learned by the Bayesian backbone allowed traditional classifiers trained on smaller datasets to exhibit high classification accuracy. The feature map computed using pre-trained Bayesian encoder on other datasets was also effective in anomaly detection, achieving 92% accuracy with one-class Support Vector Machine. Additionally, the representation learned by the BNN facilitates transfer learning, where it can be fine-tuned for classification tasks on different process maps, which is also demonstrated in this work. Our proposed framework improves the generalization and robustness of the LPBF monitoring, particularly in the face of varying data distribution across multiple process parameter spaces.
Ali H. Sayed, Stefan Vlaski, Virginia Bordignon