Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.
Introduit les bases de la recherche de l'information, couvrant la recherche par texte et booléen, la recherche de l'espace vectoriel et le calcul de la similitude.
Explore les transformateurs et les MLP pour la classification des documents, en mettant l'accent sur leurs avantages par rapport aux méthodes traditionnelles.
Explore la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets dans l'analyse de texte à l'aide de modèles d'apprentissage supervisé et de sacs de mots.
Explore la gestion du texte, en se concentrant sur les matrices, les documents et les sujets, y compris les défis de la classification des documents et des modèles avancés comme BERT.